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By Harold Hornby

SUMMARY

The equations of relative motion with impulsive velocity changes
are solved for rendezvous with a target in a circular orbit and for
motion near the apsis of any conic target orbit. The maneuver times
associated with least-fuel interception., least-fuel rendezvous, and
least -energy rendezvous are determined from the solutions. The velocity
impulse requirement for least -fuel interception is relatively distinct;
however, that for least -fuel rendezvous is not. For this reason, often
the time required for a rendezvous maneuver may be shortened signifi
cantly from that for least fuel without incurring a significant fuel
penalty. It is shown that an economical rendezvous depends not only
upon the time that is taken for the rendezvous maneuver from the posi
tion at which it is initiated; but in addition, it depends on the selec
tion of the position in the uncorrected relative motion. From these
considerations a guidance logic for economical rendezvous is evolved.
This system is a multi-impulse scheme depending on a priori knowledge
of the target orbit parameters and the measurement of the relative
range and relative velocity vectors following target acquisition. The
guidance logic permits an optimum position of initiation of the ren
dezvous maneuver to be determined. It is shown that the penalty for
commencing a rendezvous maneuver at a position significantly different
from the optimum position may be substantial.

INTRODUCTION

During the past several years, a number of proposals and studies
have been made of space -directed missions, manned and unmanned. Many

-'-Preliminary results of this study were presented by the author in
a paper entitled "Least Fuel, Least Energy, and Salvo Rendezvous" which
was delivered before the 15th Annual Spring Technical Conference of the
IRE and ARS, Cincinnati, Ohio, April 13, 196l. The proceedings of this
conference were not published by the sponsoring societies and the present
report is being released to make the information on this study more
generally available .
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of these missions have involved, either implicity or explicitly, the
rendezvousing of a maneuverable space vehicle with another orbiting
object. However, a literature search reveals few attempts to study
systematically the problems of the economical rendezvousing of space
vehicles, although the specific problems of optimum interception
(ref. l), target orbital placement (ref. 2), and interceptor orbital
placement (ref. 3) have been studied.

Rendezvous, of course, is an end in itself. But there are two
practical examples of particular interest to space flight, namely,
orbital refueling and orbital parking, in which the advantages of ren
dezvousing depend upon how cheaply it can be done. Cost is a problem
since rendezvousing can be prohibitively expensive if we try to do
things the wrong way. Suppose, for example, we try to correct an off-
course error in too short a time. Then the fuel requirement can become
an order of magnitude greater than the least-fuel solution to the prob
lem may have allowed. A similar situation can arise if we try to correct
an off-course error at the wrong position in the relative motion; the
local least -fuel requirement may be an order of magnitude greater than
at the best position.

This paper presents a study of the problem of economical rendezvous
of a maneuvering space vehicle with an orbiting target vehicle. The
principal analysis is based upon a maneuver that is idealized as a set
of impulsive changes in the velocity of the interceptor, with the target
either in a circular orbit or near an apsis of any conic orbit. The
objectives are to obtain a guidance logic for economical rendezvousing
and to obtain an understanding of the basic analytical features and the
characteristics of a rendezvous maneuver.

SYMBOLS

D

e target orbit eccentricity

E error velocity vector in reduced solution, equal to
minimum-fuel interception velocity



error velocity in apsidal solution, equal to minimum -fuel
interception velocity

target orbit altitude

direction cosines of the initial rendezvous impulse

direction cosines of the terminal rendezvous impulse
at the interception point

mass of the interceptor

less than the quantity x by at least an order of
magnitude

of the order of magnitude of the quantity x

orthogonal triad set up with its origin in the target
(The outward radius vector through the target, r0, is
the direction of the y axis, the z axis is per
pendicular to the plane of the target's motion and has
a positive sense in the direction of ft. )

target orbit semilatus rectum

generalized coordinate equal to either x or y

radius vector through the interceptor from the center of
the force field

radius vector of the interceptor at cutoff of booster

radius vector through the target from the center of the
force field

relative range or line of sight vector from the target to
the interceptor

component of the relative velocity vector in the direction
of the line of sight, V sin 7

time

time to the apsis in the target orbit

thrust vector of the interceptor
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velocity of the interceptor at burnout

relative velocity vector of the interceptor with respect
to the target

x, y, z components of in the orthogonal triad

x, y, z components of in the orthogonal triad

OL angle between the thrust vector and the initial line of
sight vector

7 angle between relative velocity vector,
V^,
and the per

pendicular to the line of sight, S_.

AV sum of the absolute values of the initial and terminal
impulses

(AV")e sum of the absolute values of the initial and terminal
impulses for a maneuver time corresponding to the least
equivalent energy

^(AV)2 total equivalent energy of the rendezvous transfer impulses

(AV)Z
sum of the absolute values of the initial and terminal im
pulses for a maneuver time corresponding to the least-fuel
interception

AV0 terminal impulse that must be made to bring the interceptor
and target vehicles to relative rest at the interception
point

AV"1
initial impulse in velocity of the interceptor that must
be made in order to intercept the target

angular velocity vector of the target orbiting in the cen
tral force field

w scalar magnitude of £_

p magnitude of the relative range in the coplanar case,

p2 = x2 + y2

a standard deviation of a given quantity, assuming that errors
are distributed in a Gaussian fashion

T time taken for a rendezvous maneuver



5

tq time of the Hohman transfer from r^ to rQ

v target orbit true anomaly

u mass gravitational constant of the central force field, CM

( ) rate of change

Subscripts

b cutoff of booster

e equivalent energy

I interception

0 target, or terminal value at the target

R relative

1 initial

(_) vector quantity

ANALYSIS

Equations of Relative Motion

The rendezvous problem is defined by the boundary constraints that
the position and velocity of a maneuvering space vehicle and an orbiting
target vehicle are to be matched. It is assumed that the interceptor
vehicle has been launched in the general direction of the target but is
not absolutely on course (see appendix A), so that a corrective maneuver
is necessary to insure an interception as indicated schematically in
figure l(a). Further, it is assumed the interceptor carries sensors that
will acquire the target at some position along the initial launch path
and measure the quantities needed to evaluate and determine subsequent
maneuvers. Each maneuver is idealized as a set of impulsive changes in
the velocity of the interceptor.

Let us consider the situation following target acquisition. We

shall use the notation that the angular velocity vector of the orbiting
target is ft. The target "sees" the relative range or line of sight
vector, S , and the relative velocity vector, V , through the interceptor.
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The radius vector of the interceptor relative to the central force is r.
An orthogonal triad, Ox, Oy, Oz, has its origin in the target, as shown
in figure l(b). The outward radius vector through the target, rQ , is
the direction of the y axis. The z axis is perpendicular to the
plane of the target' s motion and has a positive sense in the direction
of fi. In the triad, has the components x, y, z, V-p has the
components x, y, z, and ft has the components 0, 0, w. Since the
target is in a planar force field, ft = (w/w)ft, with the components
0, 0, w. Oblateness effects are neglected throughout this paper since
they are insignificant to the relative motion but cause small changes in
the magnitudes, w and w, of the absolute motion vectors, ft and ft. In a
real situation, the corrected absolute values of these quantities must
be used (see, e.g., ref. k).

The vector equation of relative motion is now:

dt2
+ 2

T
+ =
m

The thrust vector, T, is included in the foregoing equation to show
how it enters the equations of motion. One simple result will be obtained,
however, before we set T = 0 and consider _ only impulsive motion. If we
assume that the target orbit is circular (f

t = 0
) and take the scalar

product of the vector equation of motion with the relative velocity
vector, V^, we obtain

2 dt I R r J m dt

For the special case of constant thrust, more precisely, when T_/m is a
constant vector, an integral of energy is available in the form:

= • £L = | (v 2 + w^z2 - w2r2 - 3i + ^r2 + St

] (1)
m — R 2 \ R r 0 rQ /

where the rendezvous end conditions (i.e., = 0 and S = 0
) have been

imposed. Since,

r2 = rQ2 + 2yrD + x2 + y2 + z2 = (rG + y)2 + 0(x2)
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an approximation that is valid when < < r„ can be obtained

T

5
' & [
- cos a ]
Vm )

(%) ~± vR2 + w2 (z2 - 3y2) (2)

where Ci is the angle between the thrust vector and the initial line of
sight vector, S .

To illustrate typical results with this equation, suppose we consider
a situation where ~ ^+0 miles, VR

~ 1000 fps, and w ~ 10"3/sec. We
find that (T/m) cos a ~ (l/l0)g. In general, the angle a will be small
so that (T/m) ~ (l/l0)g. For rendezvous with constant thrust, then, it
is indicated that the thrust required is small; for example, if the
interceptor weighs 5000 lb, the required thrust level is, for this case,
only 500 lb. Rendezvous with impulsive thrust involves thrust levels
two orders of magnitude greater than this continuous thrust solution
(thrust accelerations of the order of 6 to 10 g delivered for periods of
the order of 1 to 3 seconds typically). Hence, the character of any
solutions that can be obtained from the continuous thrust problem may
be expected to differ substantially from the impulsive thrust solutions
that we will now proceed to develop.

To obtain the impulsive thrust solutions, we will set T = 0. The
scalar equations of motion are now:

x - 2wy - w(y + rQ) - w^

y + 2wx + wx - w2(y + rQ)

JL
r3
x + 2wr0

(y + ro) - r.

z = -

P3

JL
r3

(3)

where the coefficients in these equations may be identified to the target
orbit parameters: e, the eccentricity; v, the true anomaly; p, the semi-
latus rectum; and wQ = ^u/p3, through the equations,

w = wQ(l + e cos v)2

-2w 2 e sin v (l + e cos v)3w =

r^ - p(l + e cos v)

£3
= wG2(l + e cos v)3(l + 2\ o

-3/2



8

Circular Target Orbits

Reduced equations of motion. - A variety of restrictions may now be
imposed to yield a tractable problem. First, if the relative range is
small compared to the orbit radius (i.e., < < rQ), then terms of order
(y/rQ)2 may be neglected and r r0 + y. This assumption leads to the
general first-order problem of relative motion. It does not lend itself
to simple integration except in the case of a circular target orbit.
The solution to this case is derived in appendix B and appears to be too
cumbersome for further direct analysis. However, an inspection of the
table in appendix A leads to the conclusion that practical problems can
occur in which the difference in gravity between target and interceptor,
within the miss-distance sphere of uncertainty, is less than 1 percent.
Thus, as an additional assumption, we neglect the change in gravity over
the altitude range of interest such that w0y is, in effect, small
compared to x. With these approximations and if the target orbit is
assumed circular, the equations become simply,

x - 2wQy = 0 j
y + 2wQx

= 0 > (5)

z + wQ2z =01

and integrate immediately to:

where the boundary conditions, = (xQ, yQ, zQ), V_p> = (xQ, y0, z0),
have been applied at t = 0.

Velocity requirements.- From equations (6), the velocity require
ments of the rendezvous maneuver can be determined. In particular, if
we set xQ

=
yQ = zQ

= 0 and compute in negative time, the vector
Vj>
- (xoj yo> ^o ) represents the terminal impulse produced by ren

dezvousing in time -t from the initial position &p
= (x, y, z).



9

The initial impulse is the difference between the initial velocity
VR-l

= (xl, jl, z1 ) at &r 55 (x, y, z), and the velocity needed to
achieve an interception in time -t , = (k, y, z). The final impulse
then has these components:

xQ
x cos w t - y sin w t

= -x cot w0t - ysin wQt

y0 x sin w t + y cos wQt— =
: - = x - y cot wnT

wn sin w_t 0 (7a)

w~ sin w~t sin w t

■while the velocity required at -t has these components

x x cos
MTQt

+ y sin wQt
sin wQt

= -x cot "W0t + y

w.

-x sin vQt + y cos wQt
sin wQt

= -x - y cot wqt (7b)

• COS W t
z —: — - -z cot ¥nT

w0 sin wQt
u

where T = -t.

Equations (7a) and (jb) may be expressed vectorially:

% =

(i
i x

S
r) -

(w
o cot

^ot)sr
-

(z

tan ^) ft

& = -(
S x

'&
) -

(w
o cot

woT)&

(7c)

(7d)
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The condition for a collision in time T is equation (7d). For the
target to be intercepted in time T , therefore, a vector impulse change
AV to the initial relative velocity vector Vr must be made, given
^ 1

N ,
' fiX /SrX Vr \ Sr

= - (n x Sr) - (vQ cot w0t)sr - —1—— Sr
- I—-—M x =p

= " K COt WQT + | SR - (ft X Sr) - I g

il X
=
|

where S is the magnitude of the relative range vector, Sr, and S

is the component of the relative velocity along Sr. This component is
given by S = V sin y where rt/2 + 7 is the angle between the relative
velocity vector, Vr (magnitude V), and the line of sight, Sr. Let us
define a vector E by

/Sr ><SrA Sr

E = (f
t X Sr) + I g -I X (8)

then E is perpendicular to Sr(E • Sr - 0), does not contain T, and
has a scalar magnitude given by,

/ x X Vr\2
E2 = (& X &)2 + 2

(2 Sr VrJ

+ 1

s

M

=
wQ2(S2

- z2) - 2w0(xxy - xyx) + V2 - S2

Thus, we have a decomposition of Ay along the two perpendicular
directions, Sr and E:

. SR
AV =

(wQS cot wqt + S
)

-g- - E (9a)

with

(AVi)2
=
(w0S cot wqt + S)2 + E2 (9b)
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If the two vehicles are already on a collision course,
AV = 0—i

and the two terms in the orthogonal decomposition must he independently
zero. The first term being zero yields the results:

s *i - w0y _ yj
+ vox _ ziCOt WQT

H _ — — — - - —

The second term being zero yields, obviously, E = 0. This vector E
is, in essence, an error velocity. As noted, it is zero if the vehicles
are on a collision course. In addition, the velocity E represents
the least -fuel impulse to effect an interception of the target. This
result can be demonstrated with equations (9) if it is noted that the
time to intercept T is a free variable which may be used to make
wQS cot wqt + S = 0.

The magnitude of the terminal impulse, AVn = -Vj^, that must be
made to bring the vehicles to relative rest at the interception point
may be computed from the components of Vj^ given by equations (ja.):

(AV0)2 = xo2 + yc
W 2(X2 + y2 + Z2)

sin2 wQT

or

w^S
AVn = (100 sin wqt * '

Minimum fuel and minimum energy. - To minimize the fuel expended in
the rendezvous maneuver, it is necessary to minimize the sum of absolute
values of the initial and terminal impulses. We form,

AV ■ AVQ + AV1
= ,V° — +V(wnS cot wnx + S)2 + E2sin wqt f v o o '
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and note that Av is a function of W-T, the angular rotation of the
target during the maneuver, which "we "will call the true rendezvous
anomaly. Let us differentiate with respect to wqt :

dAV w S cos W T
o o

sin2 w t
o

(w S cot w t + S)w Sv o o ' o

w0T.|/(-w0S
cot wqt + S)2 + E^sin

Stationary values occur whenever

COt
WQT

COt W T + —q
O

WQb

■
|/ 1

+ COt2
WQT

ItCOt WnT
+ — E*

2 Q2

that is,

COt W T =

o

wQS
+ E (11)

If the true rendezvous anomaly, wqt, is determined from the sta
tionary value given by equation (ll), then the rendezvous maneuver will
involve the least amount of fuel since

32AV V S4 wQ2 S2 E2 d cot (wqt)

> 0

at this value of w t.

In a similar manner, let us consider next the total equivalent
energy of the transfer and form,

(AVef
=
(AV0)2

+ (AVxy

=
2wQ2

S2 cot2 wqt + 2wQSS cot wT

+ E2 + S2 +
wQ2
S2
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Differentiation with respect to

a(Ave)2e/ "
'WQ2 S2 cot wqt + 2wD

S
S
^

X "°p
\ d cot (w t)

shows that stationary values occur whenever

COt WoT
= -
2^S (12)

and at these stationary values,

a2(AVe)^

d(w t)2x o '

d cot (wqt)
> 0

Thus, equation (12) is the condition for least total energy in rendez
vousing with the target.

Next, consider the initial impulse AV-l only; from equations (9),it is a minimum when

COt W T = -

o w S (13)

and this is the condition for least fuel to intercept the target. Using
a different formulation for the problem, Eggleston (ref. l) has obtained
a form of this equation. By comparison with equation (ll), equation (13)
represents the time to rendezvous with least fuel only in the case

E = 0; that is, when the vehicles are already on a collision course.
This result also shows that if the vehicles are on a collision course,
there is no modification to the interception course that will result in
a fuel saving for the complete rendezvous maneuver.

In general, equation (ll) gives the optimum time or true rendez
vous anomaly for least fuel when there are two impulses, with the first
impulse applied following target acquisition. The magnitude of the
first impulse, AV1, for the optimum angle wQT, is

AY,. =

E

wQS
+ E

+
(wQS

+ E)* (HO
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to which corresponds a terminal impulse of magnitude

(15)

so that the total rendezvous impulse, AV, is

AV = J S2 + (w0S + E)2 (16)

If, instead of the optimum fuel solution, the optimum energy
solution (eq. (12)) is used, then the total impulse is

(AV)e
= AV, + AVQ + E2 +/f- + WC

2o2 (IT)

so that, whenever S » max (E , w0 S ), comparison of equations (16)
and (IT) gives

E2 + w 2S2^

(AV)e - AV = IS + r-^- S +

+ higher order terms

(wnS + E)2

23

or

(AVL - AV =
UQS
- E)-

2S
+ 0

(w S - EYv o '
(18)

This result shows that if E is larger than w0S, but small
compared to S, it may be unnecessary to wait until the optimum time
for least fuel, since for the least-energy rendezvous the additional
fuel penalty is extremely small. For example, if S = 2000 fps,
w0S = 200 fps, and E = 400 fps, and the target is in a near-earth
satellite orbit, the cost of a rendezvous in the time for least fuel of
6 minutes is about 2090 fps, and in the least energy time of k minutes
the cost is about 2100 fps. However, if the rendezvous is made in 2
minutes, which is the optimum time for intercept given by the solution
of equation (13 ), the cost is up to 2410 fps, a significant increase.
This increase follows since, if (AV)j is the total impulse when the
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optimum intercept solution is used, the difference "between the two
increments is

, % E2 + 2wQSE
(AV)j - AV = E - :

—-— + 0
2S

(v0S
- E)4

S3
(19)

This equation shows that the two impulses differ "by the first -order
term E.

Coplanar specialization. - The equations describing the rendezvous
maneuvers can be simplified still further if the specialization of
coplanar orbits is considered. This specialization is of some interest.
For example, many rendezvous maneuvers will be based upon compatible
orbits (ref. 2) which tend to reduce the rendezvous to a coplanar
maneuver. For the coplanar case, £ X S

j^ is parallel to
(Yri x §b) x §R so that the expression for E2 reduces to a perfect
square :

E2 = (V cos 7 - w0p)
n2

where p2 = x2 + y2. Equation (ll) now may be restated,

cot wqt - V sin 7

2wQp - V cos 7

v0t = it/2 + 7

if wQp > V cos 7

if wQp < V cos 7

(20)

Usually, the latter case, V cos y > wQp, will be of interest. Then
an economical rendezvous is achieved simply by setting the true rendez
vous anomaly equal to the angle between the relative range and the
relative velocity. The initial and terminal impulses are of magnitudes,

AV1
= (V cos 7 - w0p) sec 7 ; AV0

= wQp sec 7 (21)

respectively, and the total impulse, AV = AV0 + AV-l, is just the rela
tive velocity; that is,

AV = V (22)



16

Navigation considerations . - For navigation purposes , it is necessary
to know both the magnitude and the direction of the velocity impulses
required. The direction cosines of the impulses, 2, m, n initially
and I , m0, nG at interception, are

I cot woT + ^7
-1 0 X

WQ
m 1 cot WnT + 0

z,

y

n 0 0 COt WnT +0
^oz

z

(23)

and

Cot W T

-1

n
3

Cot WQT

0 1 + Cot w T

X

y

z

J I- J

(24)

In the coplanar problem with wQp < V cos y } the least-fuel solution

corresponds to cot wqt = -tan y so that "^
1

+ cot2w0T = sec 7 and
the transforming matrices above are especially simple.

It is not the intention here to deliberate upon the manner by which
the target intelligence is obtained or upon the transformations that are
needed to orient the problem in terms of the interceptor's coordinate
reference system. However, it would appear that the quantities needed
to evaluate and determine the rendezvous maneuvers subsequent to target
acquisition can be obtained readily. Thus, the vector £

2 would be
predetermined based upon an accurate target ephemeris, and stored in the
interceptor's inertial guidance system. The magnitude of the relative
range, S, and the range rate, S = V sin 7, could be obtained by an
on-board precision Doppler radar, and the direction fixed by optical
means. There remain the components of relative velocity perpendicular
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to the relative range, Sp . These could be obtained by measuring the
rate of change of direction of the relative range vector immediately
following target acquisition.

Noncircular Target Orbits

The foregoing analysis is restricted to circular target orbits. In
the following section, this restriction will be dropped. In addition,
it was assumed early in the previous analysis that gravity was constant
over the altitude range of interest (in particular, that wQy « x).
Although this assumption is necessary to this analysis, it is not
essential to a closed solution to the motion for a circular target orbit
(e.g., ref. l). This assumption will not be made in the more compre
hensive solution now to be developed. This solution is reduced to the
circular case in appendix B.

Although the target orbits now considered are noncircular, some
simplifications of the orbit equations are possible. For example, it
has been shown in reference 3 that a necessary condition for rendez
vous with a minimum expenditure of fuel, when the interceptor is
launched from the surface of the planet, is that the rendezvous should
occur at an apsis of the target's elliptical orbit. If the target orbit
is an open conic, it can be shown that rendezvous should take place at
the target periapsis and as near the periapsis of the interceptor's
trajectory as optimum burnout altitude considerations will allow. There
fore, if the target orbit is a conic, we shall set the constraint upon
the motion that the rendezvous maneuvers be in the vicinity of an apsis.
We will consider the true anomaly, v, is small such that cos v = 1
and sin v = v . These approximations are valid near periapsis and we
will make them valid near apoapsis of an elliptical target orbit by
measuring v from this point and taking the eccentricity e as
negative under this condition. The equations of motion are then:

x - 2wc(l + e)2y + 2wQ2(l + e )3evy - wQ2e(l + e)3x = 0

y + 2w0d
+ e)2x - 2wQ2(l + e )3evx - w02(3 + e)(l + e)3y = 0 (25)

z + wQ2(l
+ e)3z = 0

where

v = wQ(l + e)2(t - tQ) + 0(t - tQ)2
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with t0 the time to the apsis in the target orbit. Terms of order
vq2x2 have been neglected. If now terms of order w02vx may be
neglected also, the equations integrate immediately to:

= e
1

(A
q
e +

B
q e J
+ e (c
q
e +

D
q e J

2

1

WZ2
=
w0

2Aq
= -
(Aq
-

P
q
)

qQ

+

2Cq
=
(Aq

+

pq) q0
-
cS^ (2Td)

2Bq
= "
(Aq

+

P
q
)

^
o "

aQo 2Dq
= (\j " P
q
)

^
o +
a
^
O

(27e)

+y if q = x
Qq = complement of qQ = | (2Jf )

-x if q = y

(26)

where

q = x or y

z = -
zQ sin wzt

w~
(27a)

(2Tb)

2 (1 + e)3 (27c)

wz V1 + e

a = 2y2 (27g)

\ ■ Wx p
q =

4vg (27h)

Px
=^ p
y = jf7 (an)

The computation has been carried out in negative time t = -t with the
boundary conditions = 0
,

0
,

0
,

VR^=
kQ, yQ, zQ, applied at t = 0 .
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The vector Vr(x, y, z) is the required initial velocity at the
position &r(x, y, z) in order to intercept the target in time i, and
the vector Vp0(x0, yo> z0) is the terminal impulse needed to bring the
vehicles to relative rest at the intercept position, that is, to complete
the rendezvous. The velocity components are related to the space
coordinates by

xo X X X

= p-1 ■ (i
) p-1yQ y > y y

*z
o z

•
z z

(28)

where the matrix P is defined by equations (26) and (27). We find that

P-1A = -

axx -axy

a Vxy

0 0 -w„ A cosec w X« z

"where

axx
" (\ + py) sinh (Wl - w2) t + (>y - P

y
)

sinh (Wi +^
axy

= a
[cosh
(yx - v2)t - cosh (w1 + v2)xj

ayy
= (\ + px) sinh (v1 - w2)t +

(Ax
- sinh (wx + v2)t

, 2 + p* + p
y

W,2
~
^x
-
^vsinh2 w T + ■ *• sinh2 w0t

k w22
2
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Previously, we called the quantity,

| (AVe)2 = | [ (AV0)
+ (AV,if

the equivalent energy of the transfer impulses. It has a minimum when

cot wzt
=

2wzS
(3D

which is identical to equation (12) with wz replacing wQ.

Next, let us form the total impulse, AV = AVQ + AV-l, which is a
measure of the fuel consumed in the rendezvous:

AV = y(wzS cosec wzt f - wz2y2 + ^/(wzS cot wzt + sf + F'

Differentiation with respect to wzt with the dividend set to zero gives

cot wzf
-
wzS + D

(32)

where

1)2 = (s^V)
as the condition for least fuel to rendezvous. This equation is similar
to equation (ll) for the circular case, with E replaced by,

1 +

D = E M
1 -
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Under the least-fuel condition (eq. (32)), the total impulse, AV,
has a value given by

Equations (28), (29), (32), and (33) provide the information needed
to navigate a least-fuel rendezvous based upon two impulses, with the
first impulse applied following target acquisition, and the target orbit
either circular or near an apsis of any conic orbit.

With the mathematics of the rendezvous problem developed, it is now
appropriate to discuss some of the implications of the results obtained.
Many features of the rendezvous problem can be illustrated with the simple
case of a circular target orbit and a coplanar interceptor. An example
of this type has been examined for the conditions of a target in a 1000-
mile orbit, a separation at time of first impulse of kO miles, and a
relative velocity at this time of 1350 feet per second. The various
velocity impulses associated with rendezvous for these conditions are
shown as a function of time to rendezvous in figure 2. The initial
impulse, AV1, the "terminal impulse, AV"0, their total, AV, and the
equivalent energy impulse AVe are all presented, and the minimum
values are indicated with arrows on the curves. The initial impulse,
AV1, which is also that required to intercept, has a very pronounced
minimum. This result is a general characteristic; no matter what the
initial conditions of the relative motion, there is a distinct optimum
time to intercept. If we deviate too much on either side of that
optimum, we will pay a considerable penalty in total velocity and, hence,
in total fuel requirement. The terminal velocity curve, AVQ, is
approximately a simple rectangular hyperbola, so that the total velocity
impulse requirement, AV, has a minimum displaced from that of AV1 to a
later time. In this case, the minimum is 1350 feet per second, equal to
the initial relative velocity. The minimum is fairly shallow in typical
situations, and if it occurs at a time very much in excess of the time
for the minimization of the equivalent energy of the maneuver, AVe, it
is generally unnecessary to wait for the fuel minimum. A rendezvous
maneuver that takes a time equal to the minimization time for AVe
will in these cases consume very little fuel in excess of the true mini
mum fuel requirement. Hence, an economical rendezvous can often be
achieved in a time that is not less than the time for least-fuel inter
ception, and not more than the time for least -equivalent energy rendezvous,
about twice the least intercept time .

(33)

RESULTS AMD DISCUSSION
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The results presented in figure 2 illustrate the cost of a rendezvous
maneuver for fixed initial conditions and thus for a fixed time for in
itiation of the maneuver. It is apparent that in the interests of
economy there will be occasions when it will be advantageous to wait
before starting the maneuver. Consider, for example, a typical rendez
vous situation. The interceptor is launched to burnout at the periapsis
of a transfer ellipse and then, in the ideal case, coasts toward an
apoapsis cotangential with the target in its orbit. Suppose again, that
the target orbit is circular and that the ideal interceptor orbit is
coplanar with it. It can be proved that the magnitude of the relative
velocity vector, V, is a minimum at the cotangential transfer point.
Now let us refer to equation (22), which is valid for this special case,
with the assumption that w0y « x. The cost of the rendezvous ma
neuver is, by this equation, the relative velocity. Thus, when we are
off course, the rendezvous initial impulse is applied at the best possible
position in the uncorrected relative motion if it is called for when the
relative velocity, V, is a minimum. In this simple case, provided we wish
to rendezvous with the target rather than merely intercept it, the rela
tive velocity is a more useful quantity than the error velocity, E, since
its temporal behavior tells us when to initiate a rendezvous maneuver and
its magnitude tells us the total cost. For an interception, this infor
mation is contained in the error velocity E and its rate of change.

Obviously, we can generalize these results. For the general problem
that we have solved, we need to compute AV from equation (33) and
measure its rate of change dAV/dt. If AV is increasing at target
acquisition, then we apply immediately the initial impulse, AV,, for a
locally least-fuel rendezvous, given by equations (29) and (32) combined,
and effect a two- impulse rendezvous in the way described. If AV is
decreasing, then the situation is continually improving and the cost of
the rendezvous is continually diminishing, so we take no action. We

continue to take no action until the quantity dAV/dt becomes zero, in
other words, until AV becomes stationary. Then, before AV starts to
increase, we apply the optimum AV,. For the interception case, the
principle for economical interception may be stated similarly to that
for rendezvous, with AV and dAV/dt replaced by the error velocity, F,
and its rate of change dF/dt-

The method for economical rendezvous is a mult i- impulse scheme since,
if the first AVX is delivered in error, the guidance logic based upon
the continuous computation of AV and dAV/dt will call for an additional
impulse as soon as an error appears. To anticipate an off-course error,
and to attempt to correct it without using the guidance logic, may result
in a substantial increase in the rendezvous fuel requirement. It is
appropriate therefore to call this guidance logic the principle of least
action for economical rendezvous.
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was indicated that the time required for a rendezvous maneuver often may
be shortened significantly from that for least fuel without incurring a
significant fuel penalty. It was further shown that an economical rendez
vous depends not only upon the time taken for the rendezvous maneuver
from a given set of initial conditions; but in addition, it depends on
the selection of the initiation point in the uncorrected relative motion.
From these considerations, a guidance logic for economical rendezvous
was developed. This sytem of logic is a multi- impulse scheme depending
upon a priori knowledge of the target orbit parameters and on the measure
ment of the relative range and relative velocity vectors following target
acquisition. With the aid of the results of the analysis several sample
rendezvous maneuvers were examined. It was found that the penalty for
commencing a rendezvous maneuver at a position significantly different
from the optimum position may be substantial.

Ames Research Center
National Aeronautics and Space Administration
Moffett Field, Calif., Nov. 30, 1961
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APPENDIX A

PROPAGATION OF ERRORS AT LAUNCH INTO

MISS DISTANCE AT THE TARGET

Consider a typical rendezvous situation in "which the interceptor is
launched to burnout at the perigee of a transfer ellipse, and coasts,
in the ideal case, to an apogee cotangential with the target in its
orbit. Suppose an error is made in the initial burnout conditions. How

does this influence the miss distance at the target? The relevant partial
derivatives of the transfer orbit are:

where r^ is the radius and the velocity of the interceptor at
booster cutoff; rQ is the radius of the interceptor at the target and
t0 is the time taken for the coast along the Hohmann transfer ellipse
from rt, to rQ.

If, at burnout, the 3^ uncertainties in velocity, altitude, and
time are 20 fps, 5 miles, and 2 seconds, and the nominal burnout altitude
is 70 miles, the following errors at the target are obtained for various
target altitudes, h:

h,miles s,miles y,miles

135 39 20
200 ho 20

300 hi 21
400 hi 22

1000 hi 26



where S is the 3 c value for the miss distance at the target, and
y is the 3c value for the uncertainty in altitude relative to the
target .
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APPENDIX B

GENERAL FIRST- ORDER SOLUTION TO THE

CIRCULAR TARGET ORBIT PROBLEM

In the case of a circular target orbit, the relative vector
equation of motion reduces to:

at2
2(0 X Vg) + fl X (f

l
X r) = A (£
j

+ = (Bl)

where S
^ has the components x, y, z; V
R the components x, y, z;

and ft the components 0, 0, w . Considering impulsive motion only,
we may set T = 0.

The scalar equations of motion are now:

x - 2wy - "w2x = - — x
r3

f + 2*x . W2 (y + r0) = - 4 (y + ro) J (S2)
r3

li

z = - — z

r3

where

r2 _ r 2 [1 + 2 g
-
* x2 + f + n (B3)

ro r02

and

w2r3 = u (B4)

If
SR2 x2 + y2 + z2



is small,

r-3 ~
^o-3^

-

so that

- ^— x ~ -w2 x j - — z ~ v^z ,
r3 r

and

-
^
(y + rQ)

= -w2(y + r0)
^1

- 3 ^ j
~ -v2 (y + r0 - 3y)

whence, to the first order of approximation,

x = 2wy

y = -2wx +

z = -w2z

Applying the boundary conditions at t = 0, x = x0, y = y0,
z = z0, x = xQ, y - y0, and z = zQ, we obtain the solutions,

(y0\ . y0 / Xq\
xQ+ 2
—
J
+ (6wy0 - 3x0)t - 2 — cos wt - I6y0 - 4 — Jsin wt

y
\ w /

z = zn cos wt + — sin wtu w

which are valid for small departures (Sp = o(r0)) from the target
-location.

If we compute in negative time we are able to set xQ = 0, y0
and zQ = 0 to obtain:
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xo _ x sin wt - 2y(l - cos wt)
w 8(l - cos wt)- 3"w~t sin wt

Yo _ 2x(l - cos wt) + y(h sin wt - 3wt)
w 8(l - cos wt) - 3"wt sin wt

zo _ Z

w sin wt

(B7)

(B8)

x _ x sin wt + 2y [7(1 - cos wt ) - 3"wt sin wt]
w 8(1 - cos wt) - 3"wt sin wt

y _ -2x(l - cos wt) + y{h sin wt - 3"wt cos wt )
w 8(1 - cos wt) - 3"wt sin wt

z cos wt— = z — —
w sin wt

Hence, if initially the relative velocity vector at xlf yl, Z]_ is
X-^ y., Z-9 we are able to compute the sum of the magnitudes, AV, of
the initial impulse AVx = x - y - y±, z - zl, and the terminal
impulse AVn

= x0, yo, 'z
o that reduces the relative velocity vector at

the position 0, 0, 0 to zero, in terms of the time to rendezvous,

t = -t:

AV = AVX
+ AV0 b AV (t)

The resultant expression for AV is cumbersome and difficult to
handle analytically. However, we may approximate in the manner of
equations (29), with the quantity w replacing wz , in order to
determine the position at which to rendezvous and the time to take. The
actual impulses would then be determined by the exact equations (28),
alternatively expressed for circular orbits in the equations above, with

t = -T.
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