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DIG ITAL COMPUTERS THAT USE FLUIDS. Although 
a n a lo g computers that use a co ntinuous v a riation of flow or 
pressure level s are highly developed for industrial process 
control, digita l c OInputing devic es that wo rk with fluids are 
prac tic a ll y nonexistent. A few s imple fluid digital systems 
for se quenc ing and tim ing o p erations can be consi dered 
"c omputers 11 in a very primitive sense. Some examples of 

c irc uits or building b lo c ks for fluid digital computers are 
desc r i b e d by Dr. A. E . Mitchell of the I BM Research 

Laboratory in Zuric h. 
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One of hi s examples , s hown in Fig . 1, i s a lhree- input " And " 
gate thal uses interacting j e l s . An oulpul i s oblained only whe n a il 
lhree inp uts are presenl; olherwise, the input flows inlo lhe sinks . 
Devices such as lhi s have n o mechanical parls and need only lh e 
interaction of f luid j e t s for lhe desired outpul j s t. The inleraCUon 
of lhe A and B informatio n fl o w s p roducos an output in th e fir s t 
channel; this output can th e n inte r act with the inp ul flow of C lo 
give an output in the second c h a nne l; hence an outpul flow OCcu rs 
only when a ll input flows, A, B, and C, are p resent . Feedback 
p aths (not show n in Fig. 1) can be designed fo r a memory cell; 
such a device can be made to act as a multivibrator by reversing 
the feedback connections for an oscill ating output. 

Another typ e of fluid computing device described uses the princ iple 
of "altachment" of a jet to a wall in lhe Coanda effect. The fluid 
jet flows a lon g the solid boundary wall and is diverted from its 
emerging direction; the fluid i s injected from lhe nozzle into a n a rea 
between lwo boundary wall s . Two possible output posiHons are 
available, as the jet can be d e fl ected from one wall to the other 
by an "instruction" flow c r ealed by a jet much smaller than the 
m a in j et. 
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FIG . 1 
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OUTPUT = A ' B • C 

a ) Physical Configuration 

OUTPUT = A·B.C 

b) Symbolic Circuit 
Diagram 
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Combinations of fluid f low co ntrol devices are desc ribed that can 
provid e a variety of lo g i c a pplications, inc luding "Exc lusive or" 
and "Equiva l e n ce " gates . Many types of these small, reliable 
devices can be construc ted for a pplications in data processing sys ­
tems w here the s p eed of o p erations i s limited by the input a nd 
output of data transfer to a nd from the system . Once actuated, 
for exampl e by manual keyin g , these devic es can p erform digital 
operations within about a millisecond. ( Source : N e w Sci e ntist, 
M a r c h 7, 1963) 

HIGH-VACUUM TECHNOLOGY TO SIMULATE SPACE. Of 
a ll th e known hazards of deep s pac e, p erhap s the eas i es t to simu­
late i s th a t of a hard v acuum. However, the te c hniques for s imu­
lating the v ac uums of d eep s pace become progressive ly more C Offi ­

plex--a nd more expensive--as the vo lumes are made greater . 

(NO TE: In the fo llow ing discussion of vacuum s imulati o n, the 
vacuum - tec hnology term , torr, is used quite often . A torr i s 
define d as the a i r pressure requi red t.o s upport a co lumn of 
m e r c ury 1 mm high . At the Earth' s s urfac e , this height i s gener­
a ll y 760 mm, or 760 torr. In G iorgi units, 1 torr = 133 . 3 new­
ton/m2 . ) 

A hard-vac uum system, 2 .1 5 m (7 ft) long and 0 . 9 m (3 ft) in 
diameter, with a working region report.e d as half thi s s ize , has 
pro duced a pressure as low as 10- 15 torr; most vac uum tec h ­
nolo g i sts belie v e 10-7 torr i s satisfactory for large tanks. Several 
fac ilities throughout the nati on, including both industri a l and govern­
mental systems, have vacuum c hambers w ith dimensions from 
1.2 5 m (4 ft) in d i ameter a nd 1 .5 m ( 5 ft) l o n g to 1 2 m (39 ft) 
s p heres . Typical vacuums are in the 10- 5 to 10- 10 torr range . 

The necessity of these vacuum- s imul a tors i s apparent to designers 
of h ardware for s pace, particul a rly for a pplicati o n s of high-reliability 
Earth satellites a nd p lanetary probes. Questions p ertaining to 
vac uum, or near-vac uum, effects on materi a l s and fabrication 
processes during s pace m issi o ns are no longer academic j a nswers 
are needed n ow . E nvironme nta l e ngineers say that whil e true 
s pace s imul a tion may not be ac hieved , whateve r c lose a pp roxima­
tion po ssible is h i ghl y de s irabl e : By finding a p ossi b l e "weak link" 
in a v ita l c omponent, a costly s p ace failur e can be p reve nted . 
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In creating v acuums, the fir s t s te p i s t begin v c uati n wUh 
mechanical r oughing pump s . Diffusion pumps take ver a t abo ut 
10- 3 torr with jets of o il or mercury vapor used to carry a long 
the molec~l es being ejec te d. A check valv , in th form of a 
cryogenic baffle system, tra ps a nd freezes out any il vapor backing 
into the system . 

L a rge c h a mbers tha t requi re less than 10- 6 t rr utilize c ryogenic 
pumping, an ultra-high-vacuum system that fre ezes out unwanted 
gas molecules . Molecules are cond e n sed o n a surface a nd coole d interna lly by liquid h e lium . ool ed baffles form rad iati o n barriers 
and hence m a k e tIl e cond e nsaUon more effective . 

Future deve lopments i n space-simula tion c h ambers may be e x e m pli_ f ied by the fa c ility at the rno ld E nginee ring Development Center 
(USAF) in Tullahoma, T e nnessee . It i s to be operational n e xt 
August and has a c h a mb e r 13 m (42 it) in di a m ete r a nd a h e i ght 
of 25 m (82 it). Testing capability will inc lud e the accommodatio n 
of large vehicl e s, such as the Agena B, a t a pressure o f 10- 8 
torr . ( Source : Aerospace Management, Novemb e r, 19 62 ) 

SPECIAL FEATURES OF APOLLO SP E FT DE -
S CRI BE D . S p e c ia l desi gn fe a tures ass c iated with lun r l a nding and Earth return were described by harles H. F e ltz in a paper 
p rese nted at the American Institute of eronautics a nd stronautics ' 
Seco n d Manne d S p ace F light Meeting, pril 22-24, 1962 . He 
p resented t he p a p er a t a confidentia l sessi n h eaded by Harrison 
A . S torms , Preside nt of North American Aviation ' s Space and 
Informatio n Systems D iv i s io n. 

F e ltz said the main fac tors affecting desi g n of the c onical- shap ed 
command mo d u l e ( Fig . 2 ) were booster limitations, cre w safety, 
a nd n a tura l missio n re qui remen ts . stronaut safety through sys tem 
r e dund a n cy a nd e xha u s tive testing has been emphasized throughout. 
As a n e x a mple of a s p ecific safe ty con s ideration, Feltz desc r ibed the fli g ht t rajec to r y , whic h i s d esig n e d to p ermit abort a n y time prior t o luna r to u c hdo wn. 

To ins ure s t a bility of the comma nd m o dul e in t he e v e nt of a n abort 
a t lo w l e v e l , two s tra k es , or fin s , h a v e bee n added verticall y to 
th e c ommand m o d u l e . The comma nd m odul e can be lo w e r e d to 
Earth e Uher on l a nd or w a te r b y u s ing th ree main parac hutes , a ny tw o of whic h w ill p e rmit a s afe la nding . 
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nd 2300 ev. bul never less ; Lhe average energy 
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was about 500 ev. The c orresponding bulk velocity w as about 3 x 107 c m/sec (1.2 x 106 in/sec ), a nd the number d e nsity was about 10 c m - 3 (4 in. 3). ( S ource : Physics Today , M a r c h 1963, Vo!. 16, No. 3 ) 

IMPs DESCRIBED . Furthe r u se of a tomic p o w er in s pace will be explored by the Atomic E n e r gy Comm issio n ( AE C ) through two newly awarded contracts . O n e co ntract i s for a nuc lear generator designed for NA S A's inte rpla n e tary mo nitorin g pro b e ( IMP) scientific satellit e s (Fig . 3). T he other call s fo r d e v e lop _ ment of a n ew ato:mic fuel to pow e r communicati o n s sate Uite s . 
The AEC has selected M a rtin Comp a n y ' s Nuclear D ivis ion to design a 40 - w radioisotop e e lectrical system for I MP sate llites. It i s expected that an IMP w ith nuc lear auxiliary p o w e r c ould be operational by 1964 . 

IMP is designed to gather inform a tio n about radiatio n a nd ma g netic field s between Earth and the Moon befo re NASA A p o Uo manned lunar flight s begin later in thi s d ecad e . 

NASA has requested a nuc lear gen e r a to r because i t w ould e liminate the problems e x p e rie n ce d b y solar ce U systems whe n they are not oriented toward the S un a nd whe n they are affe cte d by the r ad ia tion e nvironment of space . 

IMP's eccentric orbit will have an apo gee o f 2 4 0 , 000 k m (150,000 m i) and a p erigee of only 1 70 km (110 m i ) . This o rbit will take the sat e llite through the artific i a l and natura l r a dia tio n belts . 
Initia l IMP satellites, schedul e d for launc h b eginning in l a t e 1963, will us e sola r s y s tems for e l ectri c a l p ow e r. If the d esign for the atomic generator i s comp a ti bl e with the IMP s y s te m, a numbe r of thes e ge nerators may be built . 

Vital radia tion data c ould be gathered by IMP for dire c t supp ort of l a ter A p o Uo manne d flights; a n operational IMP woul d be in orbit at a ll times during the project. Atomic g e nerators, whic h are not affe c ted by s p ace radia tion, may extend the useful lifetime of the sat e Uite a nd ther efore r edu ce the number of satellites n eeded . 

- 8 -
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This country' s first nuclear-poworod unH in spaco, a 2. 7-w SNAP gonsrator devolopod for tho Navy's TransH 4 -A naviga_ 
Lional satellite, was launched nearly two yuars ago. It is still 
producing power for the spacecraiL's inBtrumonts. S NAP-OA 
generators with 25-w capacHies aro lJoing dovolopod for future 
operational Transit satellites. Tho SNAP unHs for IMP will USe 
plutonium-238, a noniissionalJlo form plutonium, as fuol. Thermo_ couples will co nvert heat from radioactivo matorial d i rectly into 
e lectricity. 

Under a second program, Martin'S Nucloar Division is t.o start 
immediate development of a strontium-gO fuol form for future space use . The program is expected to yio ld a fo rm of strontium that 
will meet the rigid safety requirements sot for nucloar space 
systems . This use of a wasto fission product will make SNAP 
generators more econom ical and sWI provido the dopondability 
inherent in radioisotope generators . 

• Strontium titanate, a virtually insoluabl (orm of tho radioisotope, 
has been used successfull y in SNAP generators in land and sea 
a pplications . Radioisotop e fuel may be needed for the nation's 
communication satellite program. Strontium-gO is abundanUy 
available as a waste product of nuclear reactors. Cost of 
strontium fue l is far less than isotopes like plutonium and cirium . 
( Source : Data supplied by the Martin Comp:>ny) 

SPACE TECHNOLOGY THREATENS SPID· R LIVELIHOOD. 
PHy the lowly spider. S p ace age precision is putling him out of 
business . Sc ientists at Chrysler Corporation ' s Spaco D ivis ion 
reveal that spider webs, once widely used for cross-hairs in 
o ptical instruments, are now taking a back seat to a new develop ­
ment : the etchin g of extremely fine lines diroclly into g lass . 

S p ace age tolerances make demands that natur o cannot fulfill. 
For ins tance, the c ross-hairs of the spidsr w · b (the b lack widow has the premium web) range in thic kness between 70 in. and 
100 in . ; etc h ed h a irlines are between 100 in. and 120 in. in diameter . 

Of the 46 optical sighting ins trume nts tha t will be used in a li g ning 
the Saturn booster, only ' wo have s pider web cross - hairs . All others h a ve recently been replaced with the e tched lines . 

-10-
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Many a lignmenls are now accomplished by shining a li ght through 
lhe cross -lines in the optical ins trume nts; the same lines, ' reflecled 
from a mirror, are lined up with eac h other to form a p erfect 
a lignment . This i s similar to superimposing im ages in a range-
find er, only in this case il i s superimposin g the etc h ed lines in 
the g lass . S pider webs are a lmost impossib l e to reflect through 
a mirror because of t.heir microscopic c onstruction . The etched 
lines, however, are sharp a nd c lear. There are over 50 
oplical sighlings for lhe Salurn booster a lignment and more lhan 
1000 optical probes of subassemblies , jigs, and fixtures. 

These tesls occur many limes belween lhe time the p arts of lhe 
vehicle come in one door and lravel down the assembly lin e a nd 
deparl lhrough the olher . 

The mirrors lhal reflecl the optical s i ghting lines, whelher they 
be spider webs or elched, are optically flat. They range in 
size from 2 . 54 cm (1 in.) te- 7.6 c m (3 in.) in d iameter . 

Etched glass cross - lines will be used in the follow ing instruments : 
2 auto collimators' 14 precision le v e ls, 7 a lignme nt telescopes, 
and 10 universal lheodoliles. Spider webs are used for cross ­
hairs in only 2 of lhe 11 lransil squares . All the other optic a l 
instruments will use etched glass lines . 

A microptic prec is ion c linomete r employs a visual level vial for 
lhe measurement of a n g les and has no c ross - hairs of any kind. 

The arl of lhe spider is being r e l egaled by lhe 
where il belongs--calching insecls . ( Source : 
Chrysler Corporation) 

space age lo 
Data suppli ed by 

STERILIZATION OF SPACE PROBE COMPONENTS . In 
a report by Martin G . Koeslerer of WiJmot Castle, several methods 
of sterilization of space pro be c omponents to avoid contamination 
of other worlds have been studied : ( 1) dry heat, the method 
most em phasized (the investigation centered on temp eratures in 
the range from 1 20 0 to 150 0 C); (2) ir radi a tion; and (3) othe r 
techniques, including the use of chemical steril a nts (liquid and 

gaseous) and aseptic assembly . 

-11-
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The studies attempted to define the various biological, chemical, 
a nd phys ical factors that c ould influence the effectiveness of dry_ 
heat as a sterilizing process . Five areas were invesLigaled : 
(1) the screening, isolation, a nd growth of organisms resistant 
to dry heat; ( 2 ) the effects of tim e, temporature, strain of 
microorganism, a nd concentration on the ell ctiveness of dry heat 
sterilization; (3) the effect of the physical carrier (paper strip, 
g lass tube, sand, a nd vermiculite) on the effectiveness of dry 
heat sterilization; (4) the effects of air, vacuum, inert gases , 
entrap ment of organisms in non-aqueous liqui d and on solids; and 
(5) methods for sterility testin g of components after inocula tion 
with spores of known resistance to dry heat and the subseque nt 
a pplication of adequate sterilization cycles . 

The following findings wer e reported: 

( 1) Mesophilic aerobic spore-formers are, in general, more re ­
sistant to dry heat than are the anaerobic and thermophilic S p ore­
forming bacteria . 

(2) The type of carrier markedly affects the dose requirements 
for dry heat sterilization . Soil samples are the most resistant, 
with sand, vermiculite, g lass, and p a p er following in that order . 

(3) The gaseous environment a lso markedly infl uences the lime 
required for sterilization. Samples in a ir are the most resistant 
with samples under helium and under low vacuum (10-110 - 2 mm 
Hg) being less re s ista nt, r esp ective l y . 

(4) EntrapInent of dry bac terial s p ores i n solid s definite l y 
creases the dose of dry heat required for sterilization . 

• 
10 -

(5) There data raise a question co n ce rning th e ade quacy of the 
proposed 24 hour dry heat cyc le at a temperature of 125 0 C . 
(Source : " Sterilization of S pace Probe Comp onents ", Final 
Report, WilInot Castle Co .) 

TECHNICAL ARTICLES IN THE JOURNAL LITERATURE . 
. FroIn tiI~e to tiIne STID will report on arti c les appearing in the 
Journal hterature of potential inte rest to our readers . Requests 
for co pies of these artic les should be direc ted to the Librar" 
M-MS-IPL. • , 

• . .. 
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